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S P E C T R U M  O F  N O R M A L  O S C I L L A T I O N S  O F  A D I S L O C A T I O N  E N S E M B L E  

I N  A V I S C O P L A S T I C  M E D I U M  

N . V .  C h e r t o v a  UDC 539 

Dynamic equations of a dislocation ensemble are derived within the framework of the gauge 
model of an elastic body with defects. The governing relation between the defect field and the 
material continuum is obtained with allowance for the analogy between the equations obtained 

and MaxwelI's electrodynamic equations. In the phenomenoIogical theories of plasticity, this 

relation corresponds to the definition of a viscoplastic body. The dispersion relations and 
configurations of the normal oscillations of a dislocation ensemble in a viscoplastic medium 
are calculated. 

I n t r o d u c t i o n .  The  continual theory of defects studies imperfections of a crystal lattice within the 
framework of continuum mechanics. A crystal with dislocations is usually modeled by an elastic body with 
internal stresses that  do not depend on the applied surface and body forces. An advantage of this model is 
that  methods of the theory of elasticity can be used to calculate the displacement and stress fields produced 
by both isolated defects and defects characterized by a continuous dislocation-density tensor [1-3]. In some 
papers [3, 4], along with the static characteristic of a dislocation ensemble (dislocation-density tensor), a 
dynamic quanti ty - -  the dislocation flux density tensor - -  is considered. 

The complete system of equations of the continual theory of dislocations includes the geometrical 
equations of an elastic continuum with defects, Hooke's law, and the equations of motion of the medium [4]. 
This system of equations enables one to s tudy the dynamics of stresses and velocities of an elastic medium with 
specified dislocation density and dislocation flux. Tile further development of the continual theory of defects 
is based on the ideas and methods of the gauge field theories [5-7]. The closed system of dynamic equations 
for an elastic continuum with internal stresses [6] and the system of dynamic equations for an ensemble of 
defects [7] can be constructed within the framework of this approach. The former equations were used to 
s tudy the normal-oscillation spectra of an elastic medium with defects and to construct a phenomenological 
generalization of the model with allowance for energy dissipation [8]. 

In this paper, the dynamic equations of a dislocation ensemble are considered and the dispersion 
relations of a defect field in a viscoplastic medium are calculated. 

D e s c r i p t i o n  o f  t h e  M o d e l .  In accordance with [6, 7], an elastic body with defects can be studied 
on the basis of a model of a mixture of two continua, one of which is the material medium and the other is 
the defect field. The Lagrangian density of this model is writ ten as 

L = p V .  V -  ~ : C : /~ + B I  : I -  S o  : c~, (1) 

where V =- Ouext/ot  + V int is the effective velocity of the medium, 3 = • u  ext + ~int is the effective elastic 

distortion, which depends on the elastic displacements U ext caused by external actions, the elastic distortion 
due to the material defects ~int, and the displacement velocity Y int due to the motion of defects, c~ -- V • 
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is the dislocation-density tensor, I = o ~ i n t / o t  - V V  int is the dislocation flux tensor, p is the density, C is the 

elastic-modulus tensor of rank 4, and B and S are constants. Symbols " . "  and " : "  denote scalar convolution 
with respect to one or two indices and symbol " x "  denotes the vector product.  The first two terms of the 
Lagrangian (1) characterize the elastic continuum subjected to the action of external loads and material 
defects, and the last two terms characterize the defect field. 

Varying the Lagrangian density (1) with respect to the independent variables U ext, /3 int, and V int, we 

obtain the dynamic equations for the elastic medium with defects: 

O P  
= (2)  

Ot 

OI 
B V .  I = - P ,  S V  x ct = - B  - ~  - a. (3) 

Here P = p V  is the effective momentum of the medium and a = C : '3 is the stress tensor. Equations (3) 
together  with the geometrical relations of an elastic continuum 

Oct 
v .  ct = o, 0"- /=  v • _r, (4) 

which express the continuity condition for the dislocation-density tensor and the law of conservation of 
the Burgers vector, constitute the complete system of dynamic equations of the dislocation ensemble. The 
equat ion of dynamic equilibrium (2) is the compatibil i ty condition for the given system. However, Eqs. 
(2)-(4) are not closed since the relation between the elastic continuum and the defect field is lacking. 

Using the formal analogy between the given equations and the Maxwell's electrodynamic equations 
[9], we can relate the dislocation-timx tensor I with the electric-field strength, the density tensor ct with the 
magnetic-field strength, the effective momentum P with the charge, and the stress tensor c~ with the current. 

As a result, we write the relation 

a = ~I, (5) 

which is similar to the relation between an electromagnetic field and material in the case of a homogeneous 
conducting medium. In the phenomenological theories of plasticity [10], this relation corresponds to the 
definition of a viscoplastic body, which implies tha t  the coefficient ~7 has the meaning of the generalized 

viscosity of the medium. 
N o r m a l - O s c i l l a t i o n  S p e c t r u m  o f  t h e  D i s l o c a t i o n  E n s e m b l e  in t h e  V i s c o p l a s t i c  M e d i u m .  

We consider the propagation of the plane monochromatic  wave of the defect field in the viscoplastic medium. 

We seek a solution of (2)-(5) in the form 

I = I0 exp ( iwt  - i kx ) ,  a = ao exp ( iwt  - i kx ) .  (6) 

Substituting (6) into (2)-(5), we obtain a system of characteristic equations that  define 18 branches of 

the dispersion law: 

1 ..... 1 4 = - ~ w ~ ,  1 5 , , 6 = - ~ w  S ' k17,18= ~ \ 2 - f f 2 + w 2  - 28  J ~ + w2 ' 

or, in dimensional form 

K 2 2 = w2 K 2 = 2(w2(1 + 2w2) _ iw3)/ (1  + 4w2). 1,...,14 : 022, K15,16 - -  ia)~ 17,18 (7) 

The  corresponding dispersion curves for high and low frequencies are shown in Figs. 1 and 2. Since the last 
two equations of (7) are complex, the corresponding dispersion curves have real and imaginary parts. The real 
par t  K(w),  denoted by R(w), defines the reciprocal of the wavelength of the oscillations, and the imaginary 
par t  Z(w) gives the reciprocal of the depth  of penetrat ion of a wave of given frequency, i.e., the absorption 
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factor. The curves Rj(w) and Zj(w) (j is the branch number) in Figs. 1 and 2 show the dependences of the 
real and imaginary parts on the frequency. 

Discuss ion  of  Resul ts .  The results obtained show that the normal-oscillation spectrum of the 
dislocation ensemble in the viscoplastic medium consists of three wave groups, one of which (Ki, . . . ,  El4) 
propagates at a constant velocity without dissipation, and the other two wave groups (K15 and K16; /(17 
and Kls) possess dispersion and dissipation. An analysis of the curves presented in Figs. 1 and 2 shows 
that the wave dispersion is significant for low frequencies and is almost absent for high frequencies. For high 
frequencies, the absorption factor is also independent of frequency. 

Analysis of the normal-oscillation configurations made it possible to identify each branch of the dis- 
persion law with oscillations of definite quantities. The branches K1, K2, . . . ,  /{6 describe oscillations of 
the quantities azy, ay:, az=, a=y, a=:, I==. The two pairs K7, Ks and t{9, Kio describe oscillations of 
ay=, I:x, and Ix: and a:x, Iyx, and I~y, respectively, with the configurations ayx = Izzv/-B'/S, Iz: = 0 and 
a:= = I y x ~ ,  Icy = O. The four branches Ku ,  K12, Kin, and Kin correspond to oscillations of the 
quantities Iy:, ~y,  ayy, and a: : ,  for which the following relations hold: Lyz = Izy, ayy = I=yv/B-/S, and 
a~: = Izy ~ .  Tim branches K15 and Kl6 correspond to oscillations of the quantities azy, Ivy and aye, 
Izz, respectively, whose configurations are given by the expression 

A similar relation is valid for the quantities ayz and Izz. The branches KiT and Kls describe oscillations of 
the quantities azz and Iyx and ayz and/..=, for which 

/ 
, / ( B / S ) V ~ ( I +  2w2) 2 + w 2 + 1 + 2w 2 

4=- O~ z x  V 1 + 4w 2 

A similar relation is valid for the quantities ayx and Iz=. 
Thus, when the plane defect wave propagates in the viscoplastic medium, oscillations of all components 

of the dislocation-density tensor can be recorded. Oscillations of the diagonal components of the dislocation 
flux tensor Iyy and/zz,  which govern motion of defects in a plane that does not coincide with the wave-front 
plane, attenuate as they propagate. Oscillations of the components Iy= and ~=, defined by the Burgers-vector 
flux in the direction of motion of the defect wave in the planes perpendicular to this direction, attenuate as 
well. There are no oscillations of the flu.x-tensor components Ixy and Ixz, which correspond to the Burgers- 
vector flux along the axes perpendicular to the direction of propagation of the wave of defects moving in the 
wave plane. The above results can be used to analyze results of acoustic emission in media with defects. 
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